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Abstract—Neurological degeneration is a significant and 

irreversible medical condition where the neuron structure 

within the brain is destroyed. Conditions such as Alzheimer’s 

Disease, are slow processes which can cause issues with the 

patient’s memory, social function and personal behaviour. 

Early detection of Alzheimer’s Disease can allow for some 

intervention treatments to mitigate the impact. This paper 

proposes some novel detection methods for dementia through 

the use of convolutional neural networks (CNN) of MRI brain 

images. Some different CNN structures are presented in order 

to improve the classification performance. The OASIS dataset 

of 373 MRI images of dementia patients is used for training and 

classifying the CNNs. The ensemble method combining multiple 

CNNs had the best validation accuracy of 72%. This automatic 

method demonstrates viability and would supplement 

professional medical judgement in the early detection of 

Alzheimer’s Disease and other similar conditions.  

Keywords—Convolutional Neural Networks, MRI, machine 

networks, Alzheimer’s Disease 

I. INTRODUCTION  

A. Dementia 

Dementia conditions affect at least 55 million people 

worldwide with various levels of neurological degeneration. 

The societal cost of dementia exceeds $1.3 trillion dollars 

(US) per year for managing the care of patients [1]. Currently 

there is no cure and as the condition is irreversible, most 

treatments involve reducing the rate of decline. Early 

detection allows for intervention to improve the quality of life 

for patients. As the majority of elderly people have some 

degeneration, manual diagnosis can be a challenging task for 

medical professionals [2].  

 

As shown in Figure 1, Alzheimer’s disease causes a reduction 

of the white matter and neurons in the brain [3]. This includes 

the extreme shrinkage of the cerebral cortex (the outer layer), 

shrinkage of the hippocampus (deep into temporal lobe), and 

severely enlarged ventricles (inner voids).  

 
Figure 1: Pictorial Representation of Neurological Degeneration [4] 

Brain magnetic resonance imaging (MRI) is a common 

method to get a scan of the internal structure of the human 

brain. MRIs use strong magnetic fields and radio waves to 

generate a three-dimensional image of the human brain. 

These images can be used by medical professionals to 

identify any degeneration beyond normal aging. This can be 

done through analysing static images or comparing images of 

the patient over time. [4]  

B. Automatic Dementia Classification 

There has been some recent related work using convolutional 

neural networks to automatically classify dementia with MRI 

images. Awate et al [5] used a convolutional neural network 

to classify dementia using the OASIS dataset [6] to 

successfully classify images albeit with a very small 

validation subset. The paper utilizes Tensorflow and CuDNN 

software tools for optimizing the hyperparameters of the 

CNN and utilizing the imaging processing of the Graphic 

Processing Unit (GPU). The results are promising but issues 

with the validation dataset structure may inflate results due to 

overfitting.  

 

Islam et al [7] also used deep convolutional neural networks 

to classify dementia from MRI images. Islam used an 

ensemble model with three DenseNet CNNs to classify 

dementia from the same OASIS dataset [6]. The model 

achieved an accuracy of 94% using a four-point classification 

scale (non-demented, very mild, mild and moderate).  

 

Folego et al [8] extended the application of CNN in MRI 

images by extending the input layer to include the whole 3D 

image rather than a segment. This extension utilises domain 

adaptation to allow the whole image space to fit within the 

input of a CNN. This novel method had promising results 

with an accuracy of 52.3% but would likely need much more 

training data and computational power to be successful. 

 

Lee et al [9] used a multimodal approach to classifying 

dementia with deep learning. In addition to the MRI images, 

they also incorporated demographic information, cognitive 

performance, and cerebrospinal fluid (CSF) biomarkers to 

their recurrent neural network. This research was quite 

successful incorporating the holistic patient information to 

improve performance of their classification. 

 

The objective of this paper to propose a robust and accurate 

automatic classification system for dementia using MRI 

images. The system will be able to automatically preprocess 

the image, train the CNN using a training dataset and then 

effectively classify new MRI images. The aim is to achieve 

high accuracy with low validation and avoidance of 



overfitting (where the model is only efficient at classifying 

the specific images of the training dataset, and not the general 

type of images).  

C. Advanced Convolutional Neural Networks 

For complicated image classification problems, some 

advanced pretrained CNNs can provide powerful capability. 

These include SqueezeNet [10], AlexNet [11], GoogLeNet 

[12], ResNet18 [13] and ResNet50 [14]. SqueezeNet is a 

compact CNN with a branched structure with 18 layers deep 

and a relatively smaller number of parameters. AlexNet is a 

linear CNN with a total of five convolutional layers. 

GoogLeNet is a CNN with an extensively branch structure 

including a total of 22 layers and utilizing inception modules 

allowing different filter sizes. ResNet18 and ResNet50 are 

powerful CNNs with 18 and 50 layers respectively and have 

a large number of parameters  

 

These networks are typically applied to the ImageNet 

database [15] for classification of general images but can be 

applied to the MRI images. The structures of these networks 

often include branches and there is a large number of 

hyperparameters.  

II. METHODS 

A. Dataset 

The OASIS [6] dataset is a longitudinal study of older adults 

with MRI images including both demented and non-

demented adults. The dataset consists of 373 patients with 

brain MRI data. This is one of the largest open access 

databases of MRI images. The dataset also includes 

demographic and clinical information about the patients in 

the MRI images. CNNs with numerous tunable weight 

parameters need a large training data set in order to generate 

a robust and accurate model.   

B. Software 

Mathworks Matlab software will be used for the data 

preprocessing, CNN creation, CNN tuning and assessing 

performance [16]. Matlab’s deep learning toolbox has a 

number of built-in functions to allow for easy application of 

various neural networks methods and provides powerful 

visualization tools for monitoring the training. Matlab also 

has built-in advanced CNN structures which include the 

pretrained weights on the ImageNet database [15] 

C. Image Preprocessing 

The MRI images [6] are preprocessed prior to being 

processed by the CNN. The MRI image files are contained in 

the Analyze 7.5 dataset format and are read into Matlab using 

built-in functions. The image files are converted from 256 x 

256 x 128 pixel three dimensional images into a 64 x 64 pixel 

two-dimensional greyscale bitmap image file. A middle 

horizontal cross-section is chosen to extract from the 3D 

matrix to provide a representative image of the brain (see 

examples in Figure 2). The input size of 64 x 64 pixels for the 

CNN has been chosen to reduce the computational 

complexity of the training whilst retaining sufficient 

resolution for classification performance.  

 

 
Figure 2: Some sample brain MRI cross-sections 

These images have been collated into the image datastore 

data structure within Matlab for use with the built-in Matlab 

CNN functions [16]. Some further data processing has been 

conducted on the MRI metadata to classify the images within 

the image datastore. The main classification scheme will be 

demented / nondemented binary classification. The images 

have been randomly split between training (70%) and 

validation (30%) subsets. An extension item has been 

investigated using the clinical dementia rating (CDR) scale 

from the diagnosing doctor including non-demented; 

questionable (i.e., very mild); mild and moderate. It is noted 

that some of these CDR classes do not have sufficient images 

to allow for accurate classification.  

D. Neural Network (NN) Theory 

The machine learning structure of the neural network is based 

on the human neuron in the brain. The structure is shown in 

Figure 3, with the neuron summing multiple inputs multiplied 

by individual weights, and then adding a bias term. The 

neuron applies its own activation function to produce the 

output axon value. The weight functions are updated through 

training by comparing the outputs against the desired results 

and applying a learning function. These neurons are layered 

together to form a neural network which can process larger 

datasets and more complicated classifications. 

 
Figure 3: Neural Network Structure (Image Source: [5]) 

  



E. Convolutional Neural Network (CNN) Theory 

A convolutional neural network (CNN) is a type of neural 

network consisting of a number of layers with different 

specific functions. The input layer is the pixel values of the 

input image, and the output layer is the classification output 

values. The convolutional layers apply a sliding convolution 

filter which computes the dot product of the input (v) and the 

weights (w); then combined with the bias term (b) [17]. The 

output value (c) of the convolution at coordinates (x, y) is 

shown in Equation 1 below where p and q are the filter size: 

 

𝑐(𝑥, 𝑦) =  ∑ ∑ 𝑣(𝑥 − 𝑝, 𝑦 − 𝑞)𝑤(𝑝, 𝑞)𝑞𝑝 + 𝑏 (1) 

 

The batch normalization layer normalizes data across a batch 

of data. The Rectified Linear Unit (ReLU) layer removes 

negative values as per Equation 2 [17]: 

 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

   (2) 

 

The max pooling layer reduces the input through down-

sampling by taking the max value of each region [17]. These 

layers have a number of hyperparameters controlling the 

stride and padding of these operations. Care must be taken to 

ensure the input and output dimensions of the operations 

align.  

F. CNN Models 

A baseline basic CNN has been designed for comparison of 

the different CNNs. The structure of the CNN includes input 

image layer, three sets of convolutions, batch normalization, 

ReLU and max pooling layers. At the end is a fully connected 

layer, softmax and classification layer with two classes. 

 

The optimized CNN has been developed through fine tuning 

the baseline hyperparameters, layer structure and training. 

Through iterative testing, the optimal parameters have been 

determined in order to optimize the performance. Some 

methods for avoiding overfitting have been utilized including 

the randomization of the training data set for each epoch 

through random rotations and pixel shifts.  

 

 
Figure 4: Advanced CNN Structures Accuracy plotted against the relative 

prediction time (Source: Matlab) 

Five advanced CNNs will be evaluated to further optimize 

classification performance. From Figure 4, the selected 

CNNs include SquezeNet [10], AlexNet [11], GoogLeNet 

[12], ResNet18 [13], and ResNet50 [14]. The base layer 

structure is imported into Matlab without the pretrained 

weights for the ImageNet database [15]. The networks are 

modified to adjust the output classifications from the 

ImageNet database classes to the two dementia classes. Some 

additional preprocessing is required with an augmented 

image datastore to convert the 64 x 64-pixel greyscale (i.e., 

one channel) dataset to the typical 227 x 227 pixel colour (i.e., 

three channels) image dataset required as an input for these 

networks. Also, the dropout layers have been added to 

randomly set input values to zero between layers during 

training iterations which avoids overfitting to the training 

dataset. An example of the GoogLeNet structure is shown in 

Figure 5. 

 
Figure 5: GoogLeNet layer structure. Note the amount of branching and 

different layers.  

An ensemble method has been developed to combine 

multiple CNN’s methods together using the “wisdom of the 

crowd” concept. The output softmax classification layer 

provides a confidence score (𝑠𝑖𝑗𝑘, where s is the confidence 

score, i is the index of the image of the validation dataset, j is 

the class and k is the CNN model number) on the 

classification. The ensemble score (𝑧𝑖𝑗) is computed as the 

sum of the product of classification scores and CNN weights 

for the different CNNs (see Equation 3 below). The predicted 

ensemble classification is determined by the class with the 

highest score (𝑧𝑖1 𝑣𝑒𝑟𝑠𝑢𝑠 𝑧𝑖2). This is repeated for all images 

(i) in the validation dataset. The ensemble model 

performance is evaluated similar to the other CNNs 

𝑧𝑖𝑗 =
∑ 𝑤𝑘×𝑠𝑖𝑗𝑘𝑘

∑ 𝑤𝑘𝑘

   (3) 

 

As an extension, a four-state clinical dementia rating (CDR) 

was tested using a basic CNN. The dataset was recreated with 

new labelling with the four states of the CDR scale, but 

otherwise using similar methods discussed above.  

 

G. Performance Evaluation Metrics 

 

Each CNN performance is evaluated on three metrics. 

Accuracy is the percentage of correct validation 

classifications compared to the total size of the validation 

dataset. Cross entropy loss is a measure of mutual exclusivity 

for the classes [18]. Finally, confusion matrices are used to 

observe the distribution of the classification results.  

  



H. Functional Block Diagram 

The overall system functional block diagram is shown in 

Figure 6. The different models discussed above will be 

trained and evaluated. There will be some iteration to 

experiment with different hyperparameters (such as number 

of convolutional filters), different layer structures and 

different training parameters (such learning rate and number 

of training epochs).  

 

 
Figure 6: Functional Block Diagram 

III. EXPERIMENTS AND RESULTS 

The results of the experiment are shown in Table 1 with the 

validation data subset accuracy and validation loss metrics 

shown indicating the CNN performance. 

 

 
Table 1:CNN Performance 

Model Layers 

Deep 

Classes Accuracy Loss 

Baseline CNN 3 2 59% 0.7552 

Optimized 

CNN 

3 2 68% 0.6822 

SquezeNet 18 2 56% 0.6833 

AlexNet 5 2 66% 0.7200 

GoogLeNet 22 2 64% 0.6572 

ResNet18 18 2 68% 0.7518 

ResNet50 50 2 63% 0.6502 

Ensemble N/A 2 72% N/A 

CDR 3 4 54% 1.3537 

 

 

The baseline CNN achieved an accuracy of 59%, with the 

CNN training performance shown in Figure 7. Table 2 shows 

the details of the layer structure and key hyperparameters for 

the baseline and optimized CNN models. 

 

 

 
Figure 7: Baseline CNN Training Performance (accuracy of 59%) (training 

accuracy shown in blue, training loss in orange and validation accuracy/loss 

shown in black) 

 

 

 

 

The details of the optimized CNN, including additional 

convolutional filters, are shown in Table 2. Other changes 

include dynamic training rate which decays through training 

and randomisation of training data each epoch (reflections, 

rotations and pixel shifts) to reduce overfitting. The 

optimized CNN achieved an accuracy of 68%, an 

improvement of 9%. These optimisations made the CNN 

more successful in the robustness of the network for 

identifying the key features in the images and versatility in 

accurate predictions of new images through less overfitting. 

 
Table 2: CNN Layer Details (Baseline and Optimized) 

Layer Description Key Hyper-

parameters 

Size 

Input Image Layer  64 * 64 * 1 

Convolution Layer X filters 

Baseline:16 filters 

Optimised: 32 filters 

64 * 64* X 

Batch Normalization Layer  64 * 64* X 

ReLU Layer  64 * 64* X 

Pooling Layer Down sample by 

factor of 2 

32 * 32* X 

Convolution Layer Y filters 

Baseline:16 filters 

Optimised: 32 filters 

32 * 32* Y 

Batch Normalization Layer  32 * 32* Y 

ReLU Layer  32 * 32* Y 

Pooling Layer Down sample by 

factor of 2 

16 * 16* Y 

Convolution Layer Z filters 
Baseline:16 filters 

Optimised: 32 filters 

16 * 16* Z 

Batch Normalization Layer  16 * 16 * Z 

ReLU Layer  16 * 16 * Z 

Fully Connected Layer 2 classes 1 * 1 * 2 

Softmax Layer  1 * 1 * 2 

Classification Layer  1 * 1 * 2 

 

 

Of the advanced CNNs, AlexNet achieved an accuracy of 

66%, SqueezeNet 56%, GoogLeNet 66%, ResNet18 68% 

(Figure 8) and ResNet50 63%. As these networks were 

pretrained on the ImageNet database [15], the learning factor 

of the new two-state (demented / non-demented) 

classification output layer was configured to be twenty times 

faster than the rest of the network. Due to the large number 

of parameters and small training set, randomization of 

training data each epoch (reflections, rotations and pixel 

shifts) and dropout layers were used to reduce overfitting. 

 

 

 
Figure 8: ResNet18 Training Data Plot (Accuracy of 68%) (training 
accuracy shown in blue, training loss in orange validation and 

accuracy/loss shown in black) 



The ensemble method results are shown in the form of a 

confusion matrix in Figure 9 with an overall accuracy of 72%. 

The best individually performing CNNs were weighted 

higher than the lesser performing ones. This method achieved 

4% higher accuracy than any individual CNN model 

performance.  

 
Figure 9: Ensemble Method Confusion Matrix (blue is correct 

classification, red is incorrect) 

 

Finally, some experimentation was conducted on a CNN with 

the four-state classification using the CDR score. Shown in 

Figure 10, this achieved an accuracy of 54%. It is noted the 

classes with limited sample sizes (Mild and Moderate 

dementia classes) performed poorly due to insufficient 

training data. It was determined to focus on the two-state 

classification problem.  

 

 
Figure 10: Four State Classification Confusion Matrix (Blue is correct 

classification, red is incorrect classification).  

IV. DISCUSSION 

The results presented above are promising in the automatic 

classification of dementia from MRI images. Compared to 

the related work in the literature, there is some room for 

improvement to achieve similar high accuracy scores in 

classification. The limitations of the research include the 

computational power of experiment, CNN image resolution 

and the size of the training data. These will be discussed in 

more detail below.   

 

The baseline CNN model achieved modest classification 

accuracy of 59%. The structure of the model with three 

convolutional layers and a small number of filters did not 

have the capability to discriminate the dementia features as 

accurately as required. The training graph shown in Figure 7 

shows overfitting of the training data with the blue line hitting 

100%, which reduced the ability of the CNN to improve 

further.  

The Optimised CNN achieved a significant improvement on 

the Baseline CNN. Experiments were conducted with four 

and five layer convolutional layer structures with down-

sampling in between each layer, but these did not improve 

performance. It is inferred that with an input image size of 64 

x 64 pixels, the optimal number of layers is three, otherwise 

the down-sampled images became too small. Of all the 

hyperparameters changed, increasing the number of 

convolutional filters as shown in Table 2 had the biggest 

improvement on performance. Other changes include a 

dynamic learning rate for the ‘adam’ training algorithm 

starting at 0.001 and decaying by 80% every ten epochs. This 

was more effective at training the network than the flat 

learning rate of the baseline CNN. The dynamic learning rate 

tailored the learning to the requirements of different stages of 

the training. Also, the training data was randomized using 

pixel shifts and reflections each epoch to reduce overfitting, 

making the training dataset seem larger than it was.  

 

The performance of the advanced CNN was lower than 

anticipated as these models are optimized for a different 

classification problem of general images. The dementia 

dataset is too small to effectively train these models with a 

large number of parameters without overfitting. Whilst the 

methods of the dropout layers and training data 

randomization limited overfitting somewhat, these networks 

need significantly larger training datasets to be highly 

accurate and robust.  

 

The SqueezeNet performance was poor at 56%, 2% lower 

than the baseline system. The CNN is designed to be 

computationally less intensive with less parameters but did 

not seem effective at distinguishing the subtle features of 

dementia in the brain. Some experimentation was done with 

different learning rates, but it offers little value in 

differentiating the images. 

 

The AlexNet model achieved 66% accuracy. The 

randomization of training data and dropout layers were 

critical in improving AlexNet performance in allowing 

training that was robust and transferrable to the validation 

dataset. The training was amplified on the new output 

classification layer by a factor of twenty compared to the 

other pretrained layers. These settings achieved the best 

combination of utilizing the power of the pretrained AlexNet 

and focusing training on the output layers for the MRI 

images.  

 

Similar to AlexNet, the GoogLeNet model achieved good 

results with 64% accuracy. The inception blocks allowing 

convolutions of different sizes were a powerful feature in 

analyzing the images of the brain as the information required 

collating information spread across the MRI image. The key 

improvement in the GoogLeNet was also in effectively 

managing the overfitting through dropout layers and training 

data randomization.  

 

The ResNet18 and ResNet50 achieved mixed results. 

ResNet18 was the equal highest performing individual 

model, however it suffered from overfitting with the training 

data reaching 100% accuracy after only two epochs even with 

the mitigation measures discussed above. It is suspected the 



training dataset was too small with the large number of 

trainable parameters within the ResNet CNNs. ResNet50 also 

suffered from overfitting issues. No combination of training 

rate was found to be effective in improving performance.  

 

The ensemble classifier performance was higher than 

expected utilising the confidence scores between the different 

CNNs to generate a more accurate combined class prediction. 

It worked best with multiple different models to provide 

different perspectives on the validation images. The weight 

factors allowed for tuning to strengthen the votes from high 

performing individual CNNs (such as Optimised CNN and 

ResNet18) and soften votes from weaker performing CNNs 

(such as SqueezeNet). Improving the performance of 

individual CNNs would improve the ensemble model 

performance. The ensemble model allows the advantages of 

different CNNs to be combined to achieve higher accuracy 

than individual CNNs.  

 

The four state (CDR) classification problem would benefit 

from using a larger dataset of MRI images especially of the 

higher dementia levels to improve training performance. As 

seen in the confusion matrix of Figure 10, the classes with 

larger sizes achieve reasonable accuracy, but the smaller 

classes were ineffective at classification. With a larger dataset 

the other CNNs could also be applied to the four-state 

problem.  

V. CONCLUSION  

The results presented above show the feasibility of automatic 

detection of dementia using convolutional neural networks. 

This paper presented the performance of a number of CNN 

models which have moderate accuracy in predicting dementia 

status from MRI images. With further performance 

improvements this novel technology has the potential to assist 

doctors in the early diagnosis of patients to improve the 

medical outcomes.  

 

Future work for this paper includes better preprocessing of 

the MRI images. There was some variation in the location of 

the head within the input images. More effort could be 

invested into ensuring a consistent cross section of the head 

is taken, and for the images to be scaled and cropped 

respective to the size of the head rather than the scope of the 

MRI image. This consistency would reduce the noise, 

training overfitting and improve classification accuracy.  

 

Another area for future work is experimenting with more 

computationally powerful equipment to allow for using the 

full resolution of MRI images in the CNNs. The reduced 

resolution blurred some of the features of the brain around 

ventricles, hippocampus and cerebral cortex size reducing the 

ability of the CNNs to distinguish these features. Higher 

computational power could also assist with more 

computationally intense CNNs (such as DenseNet) or novel 

methods of Bayesian optimization of hyperparameters. These 

methods would improve the classification performance.  

 

There is also future work in terms of the dataset of MRI 

images. As discussed above, with the small size of the OASIS 

dataset, there is evidence of overfitting of training data. The 

performance of the system could improve with the utilisation 

of a larger dataset of MRI images. Training with a larger 

dataset would reduce the amount of overfitting and improve 

validation classification, especially for the advanced CNNs 

with large numbers of parameters. Another area for further 

work is incorporating other modalities into the CNN 

including age, demographics, biomarkers and genetics to 

improve performance by utilising other information about the 

patients. 

  



VI. APPENDIX: MATLAB SOFTWARE 

The Matlab scripts used for this research paper are available 

through UTS OneDrive here: 

https://1drv.ms/u/s!AvVvu1NLzg7ltF8R-

zAbeW3NUvCW?e=PXCbSE 
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