

49275 Neural Networks and Fuzzy Logic

L10. DEMENTED AND NONDEMENTED BRAIN MRI IMAGES CLASSIFICATION Seminar 2 12910939 Yuk Leong 13886357 Robert Makepeace 13797093 Sannjit Saha

Project: Classification of Demented and Non-Demented Brains

- Focusing on implementing machine learning algorithms to assist in distinguishing patients with Alzheimer's Disease
- Future applications focuses on creating assistive devices for clinicians to utilize for supported diagnosis to achieve higher accuracy.
- This concept can be up-scaled to future endeavors focusing on early detection of Alzheimer's disease, which currently do not exist.

Project Motivations

(National Institute on Aging, 2021)

- Alzheimer's is the most common form of dementia
- No cure for the disease
- According to WHO, more than 55 million people live with dementia globally.
- "In 2019, the estimated total global societal cost of dementia was US\$ 1.3 trillion, and these costs are expected to surpass US\$ 2.8 trillion by 2030 as both the number of people living with dementia and care costs increase" (World Health Organisation, 2021)

Figure 1: Example of different brain MRI images presenting different AD stage. (a) Nondemented; (b) very mild dementia; (c) mild dementia; (d) moderate dementia.

Awate et al., 2018 figure 1.1

Aim / Objectives

- Aim: Classification and prediction of demented and nondemented brain MRI using neural networks
- Ideal outcome: High accuracy (>90%) performing model, low variance and not overfitting.
- Objectives:
 - Pre-processing data to select most relevant features.
 - Create neural network capable of predicting patients likely to develop Alzheimer's disease.
 - Verify constantly model is not overfitting

Methodology

- Converting MRI scans into computationally-feasible inputs (64x64 .bmp image files)
- Splitting OASIS-2 (373 MRI sessions | 150 Subjects) dataset into training and validation
- Evenly distributing Demented and Non-demented patients into training and validation sets.
- Implementing overfitting-controls to minimise likelihood of misrepresenting accuracy of models.
- Development of various CNNs to classify patients.
- Optimising models to enhance performance, accuracy, and minimise loss.

- Functional Block Diagram
- Experiment with MRI Data from the OASIS Dataset
- Data pre-processing using MATLAB
- Nine models to evaluate: two basic CNN, five advanced CNNs, one ensemble model and one four state CNN

Experiment and Results: CNN Baseline (59% accuracy)

Ceep Learning Network Analyzer		-		×
Analysis for trainNetwork usage				
Name: net	15	0 🗛	0 0	
Analysis date: 13-Feb-2022 14:52:08	layers	warnings	errors	

• imageinput	
conv_1	
batchnorm_1	
relu_1	
maxpool_1	
conv_2	
batchnorm_2	
relu_2	
maxpool_2	
conv_3	
batchnorm_3	
erelu_3	
fc	
• softmax	
• classoutput	

	Name	Туре	Activations	Learnables
1	imageinput 64×64×1 images with 'zerocenter' nor	Image Input	64×64×1	-
2	conv_1 16 5×5×1 convolutions with stride [1 1	Convolution	64×64×16	Weights 5×5×1×16 Bias 1×1×16
3	batchnorm_1 Batch normalization with 16 channels	Batch Normalization	64×64×16	Offset 1×1×16 Scale 1×1×16
4	relu_1 ReLU	ReLU	64×64×16	-
5	maxpool_1 2×2 max pooling with stride [2 2] and	Max Pooling	32×32×16	-
6	conv_2 20 5×5×16 convolutions with stride [1	Convolution	32×32×20	Weights 5×5×16×20 Bias 1×1×20
7	batchnorm_2 Batch normalization with 20 channels	Batch Normalization	32×32×20	Offset 1×1×20 Scale 1×1×20
8	relu_2 ReLU	ReLU	32×32×20	-
9	maxpool_2 2×2 max pooling with stride [2 2] and	Max Pooling	16×16×20	-
10	conv_3 24 5×5×20 convolutions with stride [1	Convolution	16×16×24	Weights 5×5×20×24 Bias 1×1×24
11	batchnorm_3 Batch normalization with 24 channels	Batch Normalization	16×16×24	Offset 1×1×24 Scale 1×1×24
12	relu_3 ReLU	ReLU	16×16×24	-
13	fc 2 fully connected layer	Fully Connected	1×1×2	Weights 2×6144 Bias 2×1
14	softmax softmax	Softmax	1×1×2	-
15	classoutput	Classification Output	1×1×2	-

Experiment and Results: CNN Optimised (68% accuracy)

$Table \cdot 2 : \cdot CNN \cdot Layer \cdot Details \cdot (Baseline \cdot and \cdot Optimized) \P$

α

1-*-1-*-2¤

Classification Lavera

Advanced CNN Structures

- Matlab has some built advanced CNN structures
- Require input image scaling (expect 227 pixel by 227 pixel with three colour channels) – use augmentedimagestore to adjust our training set
- Reconfigure classification layer to just two classes
- Use of dropout layers to avoid overfitting
- Train network

data

CONV1

rel_{u1}

nom

– 🗆 X

Experiment and Results: SquezeNet (56% accuracy)

Experiment and Results: GoogLeNet (64% accuracy)

Experiment and Results: ResNet-18 (68% accuracy)

Experiment and Results: ResNet-50 (63% accuracy)

Experiment and Results: Ensemble Method (72% accuracy)

1	Vote between multiple CNNs discussed above
2	Use the output softmax scores (% confidence)
3	Scale each network by a weight factor
4	Sum and normalise the different contributions
5	Analyse results

Experiment and Results: Four State CDR

54% accuracy (four clases)

Experiment and Results: Summary

Model	# of Classes	Accuracy	Loss
Baseline CNN	2	59%	0.7552
Optimized CNN	2	68%	0.6822
SquezeNet	2	56%	0.6833
AlexNet	2	66%	0.7200
GoogLeNet	2	64%	0.6572
ResNet18	2	68%	0.7518
ResNet50	2	63%	0.6502
Ensemble	2	72%	N/A
CDR	4	54%	1.3537

Analysis and Discussion: Optimisation

- Training/Validation split ~ 70/30.
- Implementing imageDataAugmenter to implement rotations, pixel shifting, and reflections.
- Even distribution of Demented and Nondemented patients to ensure lack of biased classifications.
- Greater depth generally leads to higher performance, however Resnet-18 and Resnet-50 failed to demonstrate this leading to early halt of further development of Resnet-50.
- Average loss of models is 0.7, all networks achieved a loss within 1-2 standard deviations.

Analysis and Discussion: Limitations

- Training and validation split limited potential of models.
- Re-sizing images into 64x64 pixel .bmp image files resulting in lower resolution.
- Detailed features such as ventricles and hippocampus were unclear.
- Limited dataset size.

MRI scan of same patient

256x128 pixels

64x64 pixels

Conclusion

Best performing model was ensemble network.

Models could not achieve the 90% accuracy due to the limitations encountered during optimisation.

Limitations need to be addressed before future work can be continued.

Future work to improve performance

- Testing higher computational CNNs.
- Higher resolution input images.
- Better image pre-processing
- Larger dataset
- Interweaving multiple modalities.
 - Age.
 - Ethnicity.
 - Biomarkers: Derivatives of beta amyloid concentrations.
 - Genetics: TREM2.

Individual Project Contributions:

Yuk Leong

- Literature Review
- CNNs optimisation

Robert Makepeace

- Data wrangling
- CNN Experiments and Optimisation
- Advanced CNNs and optimisation
- Method

Sannjit Saha

• Feasibility

Reference

- [1] Awate, G., Bangare, S., Pradeepini, G., & Patil, S. (2018). Detection of alzheimers disease from mri using convolutional neural network with tensorflow. arXiv preprint arXiv:1806.10170.
- [2] World Health Organisation. Dementia. (2021). Retrieved 11 January 2022, from https://www.who.int/news-room/fact-sheets/detail/dementia.
- [3] Franzmeier, N., Koutsouleris, N., Benzinger, T., Goate, A., Karch, C., Fagan, A., Mcdade, E., Duering, M., Dichgans, M., Levin, J., Gordon, B. A., Lim, Y. Y., Masters, C. L., Rossor, M., Fox, N. C., O'connor, A., Chhatwal, J., Salloway, S., Danek, A., Hassenstab, J., Schofield, P. R., Morris, J. C., Bateman, R. J. And Ewers, M. (2020). Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning. *Alzheimer's & Dementia*, *16*(3), 501-511. https://doi.org/10.1002/alz.12032
- [4] Islam, J., & Zhang, Y. (2017). An ensemble of deep convolutional neural networks for Alzheimer's disease detection and classification. arXiv preprint arXiv:1712.01675.
- [5] Lee, G., Nho, K., Kang, B., Sohn, K., & Kim, D. (2019). Predicting Alzheimer's disease progression using multi-modal deep learning approach. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-018-37769-z
- [6] Scharre, D. (2019). *Preclinical, Prodromal, and Dementia Stages of Alzheimer's Disease Practical Neurology*. Practical Neurology. Retrieved 8 January 2022, from https://practicalneurology.com/articles/2019-june/preclinical-prodromal-and-dementia-stages-ofalzheimers-disease.
- [7] National Institute on Aging. (2021). *Alzheimer's Disease Fact Sheet*. Retrieved 8 January 2022, from https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet.