

49275 Neural Networks and Fuzzy Logic

L10. DEMENTED AND NONDEMENTED BRAIN MRI IMAGES CLASSIFICATION Seminar 2 12910939 Yuk Leong 13886357 Robert Makepeace 13797093 Sannjit Saha

Project: Classification of Demented and Non-Demented Brains

- Focusing on implementing machine learning algorithms to assist in distinguishing patients with Alzheimer's Disease
- Future applications focuses on creating assistive devices for clinicians to utilize for supported diagnosis to achieve higher accuracy.
- This concept can be up-scaled to future endeavors focusing on early detection of Alzheimer's disease, which currently do not exist.

Project Motivations

(National Institute on Aging, 2021)

- Alzheimer's is the most common form of dementia
- No cure for the disease
- According to WHO, more than 55 million people live with dementia globally.
- "In 2019, the estimated total global societal cost of dementia was US\$ 1.3 trillion, and these costs are expected to surpass US\$ 2.8 trillion by 2030 as both the number of people living with dementia and care costs increase" (World Health Organisation, 2021)

Figure 1: Example of different brain MRI images presenting different AD stage. (a) Nondernented; very mild dementia ; (c) mild dementia; (d) moderate dementia.

Awate et al., 2018 figure 1.1

Aim / Objectives

- Aim: Classification and prediction of demented and nondemented brain MRI using neural networks
- Ideal outcome: High accuracy (>90%) performing model, low variance and not overfitting.
- Objectives:
	- Pre-processing data to select most relevant features.
	- Create neural network capable of predicting patients likely to develop Alzheimer's disease.
	- Verify constantly model is not overfitting

Methodology

- Converting MRI scans into computationally-feasible inputs (64x64 .bmp image files)
- Splitting OASIS-2 (373 MRI sessions | 150 Subjects) dataset into training and validation
- Evenly distributing Demented and Non-demented patients into training and validation sets.
- Implementing overfitting-controls to minimise likelihood of misrepresenting accuracy of models.
- Development of various CNNs to classify patients.
- Optimising models to enhance performance, accuracy, and minimise loss.

- Functional Block Diagram
- Experiment with MRI Data from the OASIS Dataset
- Data pre-processing using MATLAB
- Nine models to evaluate: two basic CNN, five advanced CNNs, one ensemble model and one four state CNN

Experiment and Results: CNN Baseline (59% accuracy)

 \bullet imageinput

batchnorm_1

 \bullet conv 1

 \bullet relu_1

maxpool 1

 \bullet conv_2

 \bullet relu_2

 \bullet maxpool 2

 \bullet batchnorm_3

 \bullet conv $_3$

 \bullet relu_3

 \bullet softmax

 \bullet classoutput

fc

 \bullet batchnorm 2

Experiment and Results: CNN Optimised *(68% accuracy)*

Table 2: CNN Layer Details (Baseline and Optimized)

 α

 $1*1*20$

Classification Laver^o

Advanced CNN Structures

- Matlab has some built advanced CNN structures
- Require input image scaling (expect 227 pixel by 227 pixel with three colour channels) – use augmentedimagestore to adjust our training set
- Reconfigure classification layer to just two classes
- Use of dropout layers to avoid overfitting
- Train network

Training Progress (14-Feb-2022 11:09:34) 100 90 80

 $q_{\theta t_{\Theta}}$

 $c_{\alpha_{\eta_{V\mathcal{I}}}}$ $r_{e_{l_{U\mathcal{I}}}}$

 $\rho_{o_{Q'_f}}$

relug

 $\rho_{o_{Q_2}}$

 $c_{\alpha n_{V3}}$

relu3

conva

relug

convs

relus

 $\rho_{o_{\alpha_{5}}}$

relug

 \int ^{drop}6

 k

reluz

 $\frac{1}{2}$ ^{dr}op₇

ΙE

 k_{6}

Experiment and Results: AlexNet *(66% accuracy)*

Experiment and Results: SquezeNet (56% accuracy)

Experiment and Results: GoogLeNet *(64% accuracy)*

Experiment and Results: ResNet-18 *(68% accuracy)*

Experiment and Results: ResNet-50 *(63% accuracy)*

Experiment and Results: Ensemble Method *(72% accuracy)*

Experiment and Results: Four State CDR

54% accuracy (four clases)

Experiment and Results: Summary

Analysis and Discussion: Optimisation

- Training/Validation split \sim 70/30.
- Implementing imageDataAugmenter to implement rotations, pixel shifting, and reflections.
- Even distribution of Demented and Nondemented patients to ensure lack of biased classifications.
- Greater depth generally leads to higher performance, however Resnet-18 and Resnet-50 failed to demonstrate this leading to early halt of further development of Resnet-50.
- Average loss of models is 0.7, all networks achieved a loss within 1-2 standard deviations.

Analysis and Discussion: Limitations

- Training and validation split limited potential of models.
- Re-sizing images into 64x64 pixel .bmp image files resulting in lower resolution.
- Detailed features such as ventricles and hippocampus were unclear.
- Limited dataset size.

MRI scan of same patient

256x128 pixels 64x64 pixels

Conclusion

Best performing model was ensemble network.

Models could not achieve the 90% accuracy due to the limitations encountered during optimisation.

Limitations need to be addressed before future work can be continued.

Future work to improve performance

- Testing higher computational CNNs.
- Higher resolution input images.
- Better image pre-processing
- Larger dataset
- Interweaving multiple modalities.
	- Age.
	- Ethnicity.
	- Biomarkers: Derivatives of beta amyloid concentrations.
	- Genetics: TREM2.

Individual Project Contributions:

Yuk Leong

- Literature Review
- CNNs optimisation

Robert Makepeace

- Data wrangling
- CNN Experiments and Optimisation
- Advanced CNNs and optimisation
- Method

Sannjit Saha

• Feasibility

Reference

- [1] Awate, G., Bangare, S., Pradeepini, G., & Patil, S. (2018). Detection of alzheimers disease from mri using convolutional neural network with tensorflow. arXiv preprint arXiv:1806.10170.
- [2] World Health Organisation. *Dementia*. (2021). Retrieved 11 January 2022, from<https://www.who.int/news-room/fact-sheets/detail/dementia>.
- [3] Franzmeier, N., Koutsouleris, N., Benzinger, T., Goate, A., Karch, C., Fagan, A., Mcdade, E., Duering, M., Dichgans, M., Levin, J., Gordon, B. A., Lim, Y. Y., Masters, C. L., Rossor, M., Fox, N. C., O'connor, A., Chhatwal, J., Salloway, S., Danek, A., Hassenstab, J., Schofield, P. R., Morris, J. C., Bateman, R. J. And Ewers, M. (2020). Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease‐informed machine‐learning. *Alzheimer's & Dementia*, *16*(3), 501-511. <https://doi.org/10.1002/alz.12032>
- [4] Islam, J., & Zhang, Y. (2017). An ensemble of deep convolutional neural networks for Alzheimer's disease detection and classification. arXiv preprint arXiv:1712.01675.
- [5] Lee, G., Nho, K., Kang, B., Sohn, K., & Kim, D. (2019). Predicting Alzheimer's disease progression using multi-modal deep learning approach. *Scientific Reports*, *9*(1). <https://doi.org/10.1038/s41598-018-37769-z>
- [6] Scharre, D. (2019). *Preclinical, Prodromal, and Dementia Stages of Alzheimer's Disease Practical Neurology*. Practical Neurology. Retrieved 8 January 2022, from [https://practicalneurology.com/articles/2019-june/preclinical-prodromal-and-dementia-stages-ofalzheimers-disease.](https://practicalneurology.com/articles/2019-june/preclinical-prodromal-and-dementia-stages-ofalzheimers-disease)
- [7] National Institute on Aging. (2021). *Alzheimer's Disease Fact Sheet*. Retrieved 8 January 2022, from https://www.nia.nih.gov/health/alzheimersdisease-fact-sheet.