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Project:
Classification of
Demented and Non-
Demented Brains

*  Focusing on implementing machine learning algorithms to assist in
distinguishing patients with Alzheimer's Disease

*  Future applications focuses on creating assistive devices for clinicians to
utilize for supported diagnosis to achieve higher accuracy.

*  This concept can be up-scaled to future endeavors focusing on early
detection of Alzheimer's disease, which currently do not exist.



Healthy  Severe
Brain Alzheimer’s

(National Institute on Aging, 2021)

e Alzheimer's is the most common form of dementia

* No cure for the disease

’roject
Motivations

e According to WHO, more than 55 million people live with dementia
globally.

* "In 2019, the estimated total global societal cost of dementia was
USS 1.3 trillion, and these costs are expected to surpass USS 2.8
trillion by 2030 as both the number of people living with dementia
and care costs increase" (World Health Organisation, 2021)



Figure 1: Example of different brmin MRI images presenting different AD stage. (a) Nondemented:
very muld dementia : Kc ) mild dementia; modr:ratc dementia.

Awate et al., 2018 figure 1.1

e Aim: Classification and prediction of demented and nondemented
brain MRI using neural networks

* |deal outcome: High accuracy (>90%) performing model, low variance

Al m / O bJ eCtlveS | and not overfitting.

Objectives:
. Pre-processing data to select most relevant features.

. Create neural network capable of predicting patients likely to develop Alzheimer's
disease.

. Verify constantly model is not overfitting



Methodology

* Converting MRI scans into computationally-feasible inputs (64x64
.bmp image files)

» Splitting OASIS-2 (373 MRI sessions | 150 Subjects) dataset into
training and validation

e Evenly distributing Demented and Non-demented patients into
training and validation sets.

* Implementing overfitting-controls to minimise likelihood of mis-
representing accuracy of models.

Development of various CNNs to classify patients.

Optimising models to enhance performance, accuracy, and
minimise loss.



Functional Block Diagram

* Experiment with MRI Data from the OASIS
Dataset

* Data pre-processing using MATLAB

* Nine models to evaluate: two basic CNN, five
advanced CNNs, one ensemble model and one
four state CNN

Train CNNs with
Split Data Set into training data and Optimisation of
Training and verify network's hyperparameters and
Validation subsets performance with CNN structure.
validation data

SENEINIE Optimised Resnet-18/ CDR (4

Data Source

Wrangling




Experiment and Results: CNN Baseline

9% accuracy

rgress (13-Feb-2022 14:50:40) - C
4\ Deep Learning Network Analyzer - m] X
Training Progress (13-Feb-2022 14:50:40) Results
Validation accuracy: 59.00% Analysis for trainNetwork usage
Training finished: Max epochs comph Name: nel 15 0 00
Training Time Analysis date: 13-Feb-2022 14:52:08
Start time: 13-Feb-2022 14:50
Elapsed time: 1 min 23 sec
Name Type Activations Leamnables
Training Cycle
T DT I:l imageinput Image Input 64x64x] -
. ._—""—-_.___““",—‘———Q—-__..,__@me poch: ® cony_t g4xG4x1 im ..
Iteration: 50 of 50 Y 2 conv_1 Convolution 6Ax6ax16 Weights 5x5x1x16
% g [terations per epoch 1 # batchnorm_1 e Bias 1x1x16
. ! Batch Normalization | 64x64x16 Offset 1x1x16
Maximum iterations: 50 o relu 1 Scale  1x1x16
- 1 4 ReLU 64x64=16 -
Validation » maxpaol_1
Frequency’ 3 iterations Y 5 Max Pooling 32%32%16 -
® conv_2
Other Information ' 8 Convolution 32x32x20 Weights 5x5x16x28
10 20 30 40 50 Hardware resource: Single CPU # batchnorm_2 Bias e
1 1 1 1 1 1 1 1 1 1 ) ! ! 7 Batch Normalization | 32x32=28 Offset 1x1x2@
5 10 15 20 25 30 35 40 45 50 LEUTIMERSELE CIEL o2 Scale 1x1x20
lteration Learning rate: 0.002 Y g relu 2 RellU 32x32x2@ -
# maxpool_2 ReLU
e f maxpool_2 Max Pooling 16=16x20 -
® conv_3 2x2 max with st
f Convolution 16%16%24 Weights S5x5x20=24
Accuracy ® batchnorm_3 Bias 1=1=24
Training (smoothed) ! Batch Normalization | 16x16%24 Offset 1x1x24
o ®relu_3 Scale  1-1=24
Training ; =
= RelLU 16%16x24 -
— -@— - Validation .ic
- ?, A4 — - .- -o— —®Final ! Fully Connected 1x1x2 Weights 2x6144
—~— - ———— | = —% nal Loss ® softmax Bias 21
' ‘ ' ‘ ; _ : 2 : '—8 Training (smoothed) ! I Softmax 1x1x2 -
5 10 15 20 25 20 35 10 45 50 raining smooihec) 4 cisssoutout
lteration Trainin
g 5 Classification Output | 1x1x2 -
— -@— - Validation -




Experiment and Results: CNN Optimised (68%

accuracy)

Table-2:-CNN-Layer-Details-(Baseline-and-Optimized) "
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Advanced CNN Structures
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Matlab has some built advanced CNN
structures

Require input image scaling (expect
227 pixel by 227 pixel with three
colour channels) — use
augmentedimagestore to adjust our
training set

Reconfigure classification layer to just
two classes

Use of dropout layers to avoid
overfitting

Train network

zonvolutional-neural-networks.html]



Experiment and Results: AlexNet (66% accuracy)
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Experiment and Results: SquezeNet

Reconstructed

(56% accuracy)

4 Training Progress (14-Feb-2022 12:51:50)
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Experiment and Resu

Reconstructed GoogleNet - LayerNetwork

'ts: GoogleNet (64% accuracy)
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|4 Training Progress (14-Feb-2022 16:31:10)
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Experiment and Results:
ResNet-18 (68% accuracy)

Reconstructed ResNet18 - LayerNetwork
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Experiment and Results: ResNet-50 (63% accuracy)
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Experiment and Results:
Ensemble Method
(72% accuracy)

1 Vote between multiple CNNs discussed
above

2 Use the output softmax scores (%
confidence)

3 Scale each network by a weight factor

4 Sum and normalise the different
contributions

5 Analyse results
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Experiment and Results: Four State CDR

54% accuracy (four clases)

Confusion Matrix for Validation Data
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Experiment and Results: Summary

 Moddl | oiCaes | Ao | low
CDR 4 54% 1.3537




Analysis and
Discussion:

Optimisation

Training/Validation split ~ 70/30.

Implementing imageDataAugmenter to
implement rotations, pixel shifting, and
reflections.

Even distribution of Demented and Non-
demented patients to ensure lack of biased
classifications.

Greater depth generally leads to higher
performance, however Resnet-18 and Resnet-

50 failed to demonstrate this leading to early halt
of further development of Resnet-50.

Average loss of models is 0.7, all networks
achieved a loss within 1-2 standard deviations.



Analysis and Discussion: Limitations

* Training and validation split limited potential of models.

* Re-sizing images into 64x64 pixel .bmp image files resulting in lower resolution.

Detailed features such as ventricles and hippocampus were unclear.

Limited dataset size.

MRI scan of same patient

256x128 pixels 64x64 pixels



Best performing model was
ensemble network.

Models could not achieve the 90%

Conclusion accuracy due to the limitations
encountered during optimisation.

Limitations need to be addressed
before future work can be
continued.




» Testing higher computational CNNs.

* Higher resolution input images.

Future work * Better image pre-processing
to Improve

* Larger dataset

* Interweaving multiple modalities.

performance . Age.

* Ethnicity.

* Biomarkers: Derivatives of beta amyloid
concentrations.

* Genetics: TREM2.




Individual Project Contributions:

e Literature Review e Data wrangling e Feasibility
e CNNs optimisation e CNN Experiments and
Optimisation
e Advanced CNNs and
optimisation
e Method
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