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Project: 
Classification of 
Demented and Non-
Demented Brains

• Focusing on implementing machine learning algorithms to assist in 
distinguishing patients with Alzheimer's Disease

• Future applications focuses on creating assistive devices for clinicians to 
utilize for supported diagnosis to achieve higher accuracy.

• This concept can be up-scaled to future endeavors focusing on early 
detection of Alzheimer's disease, which currently do not exist.



Project 
Motivations

• Alzheimer's is the most common form of dementia

• No cure for the disease

• According to WHO, more than 55 million people live with dementia 
globally.

• "In 2019, the estimated total global societal cost of dementia was 
US$ 1.3 trillion, and these costs are expected to surpass US$ 2.8 
trillion by 2030 as both the number of people living with dementia 
and care costs increase" (World Health Organisation, 2021)

(National Institute on Aging, 2021)



Aim / Objectives

• Aim: Classification and prediction of demented and nondemented 
brain MRI using neural networks

• Ideal outcome: High accuracy (>90%) performing model, low variance 
and not overfitting.

• Objectives:

• Pre-processing data to select most relevant features.

• Create neural network capable of predicting patients likely to develop Alzheimer's 
disease.

• Verify constantly model is not overfitting

Awate et al., 2018 figure 1.1



Methodology

• Converting MRI scans into computationally-feasible inputs (64x64 
.bmp image files)

• Splitting OASIS-2 (373 MRI sessions | 150 Subjects) dataset into 
training and validation

• Evenly distributing Demented and Non-demented patients into 
training and validation sets.

• Implementing overfitting-controls to minimise likelihood of mis-
representing accuracy of models.

• Development of various CNNs to classify patients.

• Optimising models to enhance performance, accuracy, and 
minimise loss.



Functional Block Diagram
• Experiment with MRI Data from the OASIS 

Dataset

• Data pre-processing using MATLAB 

• Nine models to evaluate: two basic CNN, five 
advanced CNNs, one ensemble model and one 
four state CNN
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Experiment and Results: CNN Baseline 
(59% accuracy)



Experiment and Results: CNN Optimised (68% 
accuracy)



Advanced CNN Structures

• Source: Mathworks Pretrained deep neural networks [https://au.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html]

• Matlab has some built advanced CNN 
structures

• Require input image scaling (expect 
227 pixel by 227 pixel with three 
colour channels) – use 
augmentedimagestore to adjust our 
training set

• Reconfigure classification layer to just 
two classes

• Use of dropout layers to avoid 
overfitting

• Train network 



Experiment and Results: AlexNet (66% accuracy)



Experiment and Results: SquezeNet
(56% accuracy)



Experiment and Results: GoogLeNet (64% accuracy)



Experiment and Results: 
ResNet-18 (68% accuracy)



Experiment and Results: ResNet-50 (63% accuracy)



Experiment and Results: 
Ensemble Method
(72% accuracy)

Vote between multiple CNNs discussed 
above1

Use the output softmax scores (% 
confidence)2

Scale each network by a weight factor3

Sum and normalise the different 
contributions4

Analyse results5



Experiment and Results: Four State CDR

54% accuracy (four clases)



Experiment and Results: Summary

Model # of Classes Accuracy Loss

Baseline CNN 2 59% 0.7552

Optimized CNN 2 68% 0.6822

SquezeNet 2 56% 0.6833

AlexNet 2 66% 0.7200

GoogLeNet 2 64% 0.6572

ResNet18 2 68% 0.7518

ResNet50 2 63% 0.6502

Ensemble 2 72% N/A

CDR 4 54% 1.3537



Analysis and 
Discussion: 
Optimisation

• Training/Validation split ~ 70/30.

• Implementing imageDataAugmenter to 
implement rotations, pixel shifting, and 
reflections.

• Even distribution of Demented and Non-
demented patients to ensure lack of biased 
classifications.

• Greater depth generally leads to higher 
performance, however Resnet-18 and Resnet-
50 failed to demonstrate this leading to early halt 
of further development of Resnet-50.

• Average loss of models is 0.7, all networks 
achieved a loss within 1-2 standard deviations.



Analysis and Discussion: Limitations

• Training and validation split limited potential of models.

• Re-sizing images into 64x64 pixel .bmp image files resulting in lower resolution.

• Detailed features such as ventricles and hippocampus were unclear.

• Limited dataset size.

MRI scan of same patient

256x128 pixels 64x64 pixels



Conclusion

Best performing model was 
ensemble network.

Models could not achieve the 90% 
accuracy due to the limitations 
encountered during optimisation.

Limitations need to be addressed 
before future work can be 
continued. 



Future work 
to improve 
performance

• Testing higher computational CNNs.

• Higher resolution input images.

• Better image pre-processing

• Larger dataset

• Interweaving multiple modalities. 

• Age.

• Ethnicity. 

• Biomarkers: Derivatives of beta amyloid 
concentrations. 

• Genetics: TREM2.



Individual Project Contributions:

Yuk Leong

• Literature Review

• CNNs optimisation

Robert Makepeace

• Data wrangling

• CNN Experiments and 
Optimisation

• Advanced CNNs and 
optimisation

• Method

Sannjit Saha

• Feasibility
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