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ABSTRACT

Wrist-type photoplethysmographic (PPG) signals are an increasingly
popular way to monitor heart rate during intensive exercise. How-
ever these signals are highly influenced by motion artefacts. This
paper proposes a novel system for heart rate extraction termed Dis-
crete Candidate Analysis (DCA). The DCA extracts a discrete set of
possible heart rates from PPG signal, from which the sequence of
most likely candidates is chosen based on accelerometric data, har-
monic and temporal analysis. On a dataset of 23 PPG recordings, the
proposed system obtained an average error of 3.02 beats per minute.

Index Terms— Photoplethysmograph (PPG), Heart Rate Mon-
itoring, Discrete Candidate Analysis, Temporal Path Finding

1. INTRODUCTION

Photoplethysmographic (PPG) signals from wrist-type pulse oxime-
ters are an increasingly popular mean to monitor heart rate during in-
tensive exercise. The PPG signals are quasi-periodic with the heart
rate, but are are very sensitive to any relative motion between the
oximeter and skin. This makes their usage challenging during peri-
ods of exercise due to strong motion artefacts (MA) caused by such
motions.

To combat the effects of MA, simultaneously recorded ac-
celerometer data can be used to capture motion, allowing for subse-
quent MA removal from PPG signals using adaptive filtering [1, 2],
producing promising results.

In this paper, we present a novel system termed Discrete Can-
didate Analysis (DCA) for heart rate monitoring using wrist-type
PPG signals. It focuses on the analysis of a set of possible heart
rate outputs termed PPG candidates. It uses accelerometer and tem-
poral information to compute a comprehensive suite of confidence
coefficients for each candidate in order to distinguish the most likely
candidate for output.

2. RELATION TO PRIOR WORK

Similar to previous work of [3], the proposed system uses the peri-
odogram to find the dominant spectral peaks of PPG signals. How-
ever, instead of picking the strongest peak, the proposed system finds
a number of peaks and consider them candidates for the true heart
rate. From here, accelerometer data is used to filter out motion arte-
fact (MA). However, unlike the time domain adaptive filtering tech-
niques of [2], Wiener filtering techniques of [4] and signal decompo-
sition approach of [5], the proposed system works in the frequency
domain, looking at the difference in frequency between the candidate

and any accelerometer spectral peak. This allows for more flexibil-
ity in MA removal, such as allowing easy suppression of heart rate
candidates near all harmonics of accelerometer spectral peaks even
if those harmonics are not present in the accelerometer spectrum.

The work by Lopez et al. [6] considers a similar approach as
the proposed system. However, it uses a smaller suite of confidence
coefficients with lower distinguishing power to pick the best output
candidate.

The proposed DCA system was developed for the University of
New South Wales entry to the IEEE Signal Processing Cup 2015
[5]. It was ranked 6th based on the Average Absolute Error (AAE)
in beats per minute (BPM) [5]. On a competition test set of 10 PPG
recordings, the proposed DCA system achieved AAE of 3.70 BPM,
while the top 3 teams achieved 3.44, 2.27, 3.26 BPM respectively
[7]. According to [7], these top 3 systems all include time signal
based MA removal techniques such adaptive and Wiener filtering,
which is different to the proposed candidate based MA removal.

3. DATABASE

The proposed DCA system was developed using 23 datasets sup-
plied by Zhang et al. [5]. Each dataset contains simultaneously
recorded dual-channel PPG signal, three-axis accelerometer signal,
and a ground-truth ECG signal - all sampled at 125 Hz. The PPG
signal was recorded using a pulse oximeter which was embedded in
a wristband together with accelerometer and worn by subjects dur-
ing intensive exercise. The ECG signal was recorded from the chest
using wet ECG sensors. During data recording, subjects did one of
three activities: walk/run on a treadmill, rehabilitation arm exercises,
or intensive arm movements (boxing), as summarised in [4].

4. DISCRETE CANDIDATE ANALYSIS SYSTEM
DESCRIPTION

The key characteristic of the proposed DCA system is the focus on
analysis of candidates. A candidate is a dominant frequency in a
frame of a signal estimated as a local maxima in the power spec-
trum. For every frame, the DCA estimates a set of heart rate candi-
dates (termed PPG candidates) and assesses them against a number
of criteria in order to choose the most likely candidate as output.
The system can be broken down into four main components
(Figure 1): (i) Compute set of possible output frequencies, termed
PPG candidates, from the dual-channel PPG signal frames (Section
4.1); (ii) Compute a set of motion artefact candidates from the 3-axis
accelerometer signal frames (Section 4.2); (iii) Compute a suite of
confidence coefficients for each PPG candidate using artefact candi-
dates and temporal, harmonic analysis (Section 4.3); (iv) Decide the



best PPG candidate for heart rate output based on the coefficients
from (iii) (Section 4.4). Note, the DCA is a frame based system,
where a sliding window of T seconds is used with an incremental
step size of M seconds. In our set-up, ' = 8, M = 2.
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Fig. 1. DCA Opverall system: sets of heart rate and artefact candi-
dates are chosen from PPG and accelerometer signals respectively.
They are analysed and one heart rate candidate is chosen for output

4.1. Compute set of PPG candidates

The aim of this component is to compute a discrete set of candi-
dates from a frame of dual-channel PPG signal (Figure 2). The PPG
signals are initially band-pass filtered to remove out-of-band noise.
The power spectrum estimates are then computed via DFT based
periodogram and the local maxima are extracted as the candidates.
This forms the base set of candidates for output heart rate (Figure 4).
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Fig. 2. Compute PPG Candidates: 2 set of heart rate candidates are
extracted from dual-channel PPG signals by finding the dominant
frequencies in the power spectrum

4.1.1. Band Pass Filtering

A 10th order Butterworth filter is used, with lower and higher cut-off
frequencies of 1 Hz (60 BPM) and 6 Hz (360 BPM) respectively.

4.1.2. Spectral Peak Finding (SPF) Algorithm

A DFT-based periodogram estimated from a Hanning windowed
frame of PPG signal is used for power spectrum estimation, from
which a set of local maxima are extracted. The number of points
in DFT calculations was empirically chosen as Nprr = 50, 000,
giving accurate local maxima with reasonable computational load.

The biggest local maxima are then chosen as candidates sub-
ject to two condition parameters: (i) the maximum number of local
maxima chosen is Npeqr in order to limit the computational load on
subsequent stages of the proposed algorithm. (ii) All local maxima
below the noise floor threshold Keqk are ignored. We empirically
set Npear, = 4 and Kpear = 200.

It should be noted that the two sets of PPG candidates are com-
puted independently for the two channels of PPG signals.

4.1.3. Fundamental Frequency Sharpening

Once PPG candidates are found, the power value p’ of each PPG
candidate is sharpened according to eqn (1). This reduces the relative

power value of noise candidates.
p'=Si+ B XS (1)

where i is frequency of candidate, .S; and S2; are power esti-
mates of corresponding PPG channel at frequencies ¢ and 2 respec-
tively. 3 is a constant empirically set to 0.5.

4.2. Compute set of Artefact candidates

The aim of this component is to compute a discrete set of artefact
candidates from a frame of the 3-axis accelerometer signal (Figure
3). These artefact candidates are estimates of the frequencies of mo-
tion by wearer (Figure 4), and will be subsequently used (Section
4.3.2) to assess whether each PPG candidate is a motion artefact
(MA).

One set of artefact candidates is computed from each channel
of the given accelerometer signal block, using the SPF algorithm
(Section 4.1.2). The three sets are then concatenated and passed to
the Artefact Candidate Processing algorithm for further processing
(Section 4.2.1). The parameters for the SPF algorithm when applied
to accelerometer signals are Npcar = 4, Kpear = 0.5. In addition
to these, an extra constraint, ﬁpeak, is introduced where only candi-
dates with frequency above f}peak are chosen in order to eliminate
slowly varying noise components. Here ];peak was empirically set
as 10 BPM.
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Fig. 3. Compute Artefact Candidates: 3 sets of artefact candidates
are extracted from 3-axis accelerometer signals by finding the domi-
nant frequencies in their power spectrum. The sets are concatenated
and then processed to form one set

4.2.1. Artefact Candidate Processing

Given a set of artefact candidates, the aim here is to filter out irrel-
evant candidates then add in extra “missing” harmonic candidates.
This was inspired by two observations: (i) motion artefacts usually
have strong 2nd and/or 3rd harmonics in the accelerometer signal;
(ii) in cases where one of the 2nd or 3rd harmonics is not present
in the accelerometer signals, the missing harmonic may still cause a
strong motion artefact in the PPG signal at that harmonic frequency.

For a set of artefact candidates, the algorithm finds candidates
that have a 2nd or 3rd harmonic relationship with at least one other
candidate. Every candidate found with a harmonic relationship have
their 2nd or 3rd harmonic added to the candidate set if it is not
present. Of the resultant set, candidates within 1 BPM of another
candidate are deemed duplicates and removed. Candidates without
this harmonic relationship are deemed to be noise and are removed
unless their power value is greater than a threshold IA(;,wk (setto 10
empirically).

4.3. Compute Confidence Coefficients

For each PPG candidate, a suite of confidence coefficients are com-
puted to determine its’ likelihood of being the heart rate. They are
described in Table 1. These coefficients are crucial to the decision
process (Section 4.4) in order to output the most likely sequence of
heart rates.
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Fig. 4. Example sets of PPG candidates and artefact candidates from
multiple frames, plotted against ground truth heart rates. PPG candi-
dates are the set of possible choices for output heart rate, and should
include the ground truth heart rate. Artefact candidates indicate the
frequencies of motion artefacts, and are subsequently used in choos-
ing the correct PPG candidate

Table 1. Confidence coefficients and their meanings

C, | Power of candidate
C, Assess: Is candidate a motion artefact

Ch Assess: Is candidate harmonic of another candidate

Ct Assess: Is candidate part of a temporal path

Cto | Mean C, of candidates on temporal path

Cy, | Mean C}, of candidates on temporal path

C,, | Frequency difference between candidate, last output

4.3.1. Power Coefficient C),

The maximum sharpened power value (Section 4.1.3) in current set
of PPG candidates is found as p}, .. Cp [6] is then given by:
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where p’ is sharpened power value of candidate.

Note, there are two sets of PPG candidates, one from each chan-
nel, and the C), coefficients of each set are computed independently.
The two sets of PPG candidates are then concatenated to form one
set.

4.3.2. Motion Artefact Coefficient C,

This coefficient assesses PPG candidates for their proximity in fre-
quency to any artefact candidate in current frame. C|, is given by:

Oa:<w> (3)

where ¢ and j are frequencies in BPM of PPG candidate and artefact
candidate respectively, A is set of artefact candidate frequencies in
current frame, and D, is a constant empirically set to 10 BPM. (- )
denotes saturation to [0, 1].

4.3.3. Harmonic Coefficient C},

This coefficient assesses whether the PPG candidates are 2nd/3rd/4th
harmonics of another candidate in the set. C}, of PPG candidate with
frequency j is given by:
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where P is set of PPG candidate frequencies in current frame, (-)
denotes saturation to [0, 1], D}, is a constant empirically set to 0.05,
and §;,; is given by:
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4.3.4. Temporal Coefficients Ct, Ctq, Cin,

The temporal coefficient C; assesses whether PPG candidates are
part of a smooth temporal sequence. This is motivated by the ob-
servation that heart rate should always follow a smooth trajectory in
time [8]. The coefficients Ct, and C}j, assesses whether a temporal
sequence is contaminated with MA and harmonics respectively.

The objective is to find an optimal temporal path of length N
candidates, terminating on a candidate in the current frame with fre-
quency j. N is empirically set to 10. Let Py, ; denote the score of
such a path, given by:

i F, <N
— . 9 n n N
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where F, is the set of PPG candidate frequencies at frame offset n.
Note n = N corresponds to the current frame. Edge score E; ; is
given by:

Eij = (M xli—j|+ B) @)
where ¢ and j are candidate frequencies, M and B are constants
empirically chosen such that the straight line y = Mz 4 B has x-
intercept of 10 BPM, and y=1 at 3 BPM. (- ) denotes saturation to
[0,1].

This optimal path problem is solved via dynamic programming
where eqn (6) is computed recursively as:
Prj = max (Pn1:x Eij) ®)
In our experiment, we also allow a maximum of 1 break in an
otherwise continuous path. The modified path score is given by:

P,,,l = max (PrlLfl,i X E@j), max (Pnfgyi X Eiyj) (9)
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where [- ] denotes the maximum of multiple input values.
C} of candidate in current frame with frequency j is given by:

C, = PI’V, ; (10)

To compute Ct, and Cyy, for each candidate, the algorithm re-
traces the path from the candidate back to the head of path. C;, and
C'p, are computed as the arithmetic mean C, and C}, of all candi-
dates in the path. C, and C}, of candidates beyond the head of a

broken path (where EZ = 0) are treated as 0.

4.3.5. Memory Coefficient C,

This coefficient assesses PPG candidates’ proximity in frequency to
the previous output heart rate. The memory coefficient of candidate
with frequency ¢ is given by:

_ /Ll
cm_<1 Tom— > (an

where i’ is the last chosen output heart rate frequency, D., is con-
stant set to 0.3. (- ) denotes saturation to [0, 1].

Unlike the memory coefficient of [6], the DCA’s memory coeffi-
cient does not use a decay mechanism but instead prevents the incor-
rect tracking of strong MA via a robust decision method described
in Section 4.4.
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Fig. 5. Comparison of Average Absolute Error (AAE) between TROIKA [5], system of [4] and proposed DCA system over 23 datasets

4.4. Robust PPG Candidate Selection

Given one set of PPG candidates and the suite of confidence coeffi-
cients (Section 4.3), this component decides on one candidate as the
output heart rate (Figure 6).

There are four parts to deciding the output candidate, outlined
below.

(i) Compute C: Confidence coefficients of candidates are
merged into one value as a weighted average C, given by:

C=Cp+Ca+Ch+Ci+2Cn (12)
The C),, weight was set higher to encourage a smooth path in heart
rate outputs.

(ii) Repeat Threshold: If the highest C' score of the set is lower
than a threshold Kp (set to 0.6 in our experiment), repeat the last
chosen candidate and finish. This prevents a single impulsive bad
candidate from corrupting the memory coefficient calculation. Con-
secutive repeats are not allowed.

(iii) Search Range: Candidates with frequencies differing from
the last chosen output candidate by more than +20 BPM are invali-
dated [5]. The remaining candidate with highest C' score is chosen
as output candidate. In the case where all candidates are invalidated,
choose candidate with highest C.

(iv) Motion Artefact (MA) Verification: Given the chosen candi-
date €2 from (iii), a final verification is carried out to prevent tracking
of a strong MA path. The algorithm searches for a PPG candidate
in current set with C, Ct, and CYy, greater than thresholds Ky, Ky,
and K;p,, and its Cy, > a x C}, where Cj, is coefficient of Q. If
this condition is met, it means that a significantly better path is avail-
able uncorrupted by MA and €2 is overwritten. In our experiment,
K: =07, Kia = 0.9, K, = 0.9, a = 4.
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Fig. 6. Decision Logic to choose the most likely PPG candidate for
heart rate output

5. EXPERIMENTAL RESULT

The average absolute error (AAE) is a metric proposed by [5] to
evaluate PPG heart rate extraction systems. The AAE of the pro-
posed DCA system is presented in Table 2. It is also plotted in Fig-
ure 5 together with those reported by TROIKA [5] and system of [4].

The AAE of DCA over all 23 datasets is 3.02 BPM which is slightly
higher than the 2.27 BPM achieved by the Wiener filter based sys-
tem of [4]. Over the 12 datasets common to TROIKA [5], DCA and
TROIKA produced similar AAE of 2.35 and 2.34 BPM respectively.

Of the 12 datasets common to all three systems, there are 8
datasets where DCA performed better than TROIKA and similar to
system of [4]. However, for datasets 2, 4 and 6, the DCA performed
worse because it temporarily tracked a strong motion artefact (MA)
path. This is due to a MA path crossing and hence severing the heart
rate path. Despite this, the difference is only minor due to DCA’s
ability to recover via MA Verification (Section 4.4). For dataset 10,
the DCA performed worse due to a strong MA path being very close
to heart rate path for large portion of the dataset. The DFT-based
periodogram was unable to identify many spectral peaks that are due
to heart rate because of spectral smearing of periodogram.

Of the 10 datasets common to DCA and system of [4], the two
performed similarly with AAE of 3.70 and 3.61 BMP respectively.

Table 2. Absolute Average Error (AAE) of the proposed DCA sys-
tem over 23 datasets (D) provided by [5]

D AAE D AAE D AAE D AAE
1 21100 7 1.0107 || 13 4.4256 19 2.2685
2 3.9333 8 0.8291 14 104639 || 20 4.2164
3 009145 9 0.7582 || 15 1.884 21 5.7338
4 3.0694 || 10 7.1123 || 16 23113 22 14717
5 09040 || 11 1.6588 || 17  4.7328 23 0.87898
6 3.8529 || 12 1.9874 || 18  3.0175

6. CONCLUSION

In this paper, we described the proposed Discrete Candidate Anal-
ysis system for heart rate monitoring during intensive exercise.
The DCA extracts a discrete set of possible heart rate candidates
from PPG signal, from which the mostly likely candidate, rep-
resenting our heart rate estimate, is chosen based on a suite of
confidence coefficients. This suite is comprehensive as it includes
accelerometric-data, harmonic and temporal analysis, thus allowing
accurate removal of motion artefacts and robust tracking of under-
lying heart rate. Compared to techniques that focus in the time
domain such as [5], the DCA has low computation complexity be-
cause all confidence coefficients can be computed in the candidate
domain in polynomial time, where the number of candidates per
frame is significantly less than the number of signal samples per
frame. Future work will include refining the DCA through trialling
high-resolution power spectrum estimation techniques, as well as
Wiener/adaptive filtering MA removal techniques as a preprocessing
step. Experimental results indicate that the DCA is an accurate and
robust method of heart rate monitoring during intensive exercise.
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